The collatz conjecture in its original form is this:
Definition [Collatz-Function]. The Collatz function for an integer $n \in \mathbb{N}$ is defined as $$ C(n) := \begin{cases} 3n+1 & \text{if}\;n\;\text{is odd} \\ n/2 & \text{if}\;n\;\text{is even}\end{cases} $$ $\blacktriangleleft$ |
Then the conjecture is:
Collatz-Conjecture. For each \(n \in \mathbb{N}\) there exists an \(k \in \mathbb{N}\) such that \(C^k(n) = 1\). |
The \(C^k(n)\) means that \(C\) is applied \(k\)-times in a row using the output from the previous round as the input for the next round.
If there is a counterexample \(n\) to the Collatz conjecture, then either
- \(n\) is part of an infinite non-repeating trajectory
- \(n\) is part of an non-trivial cycle
First i want to give a heuristic argument about the correctness of the CC.
# An Heuristic Argument #
Sometimes it is convient to describe the collatz function a little bit different.
Definition [Collatz-Function (2)]. The Collatz function for an integer $n \in \mathbb{N}$ is defined as $$ C(n) = \begin{cases} (3n+1)/2 & \text{if}\;n\;\text{is odd} \\ n/2 & \text{if}\;n\;\text{is even}\end{cases} $$ $\blacktriangleleft$ |
Since if \(n\) is odd, \(3n+1\) is even, hence one could immediatelly divide by \(2\).
We neglect the \(+1\) in the odd case and assume the average behaviour. That means, case 1 and case 2 occur both with probability 1/2. So \(C^k(n)\) is with probability one-half \(C^{k-1}(n)/2\) and with probability one-half \(C^{k-1}(n)3/2\). The denominator gets in each round an additional factor of \(2\), whereof the numerator on the average only increases in every second round by a factor of \(3\). Hence, after \(2k\) round we have $$C^{2k}(n) \approx \frac{3^{k}}{2^{2k}}n = \left(\frac{3}{4}\right)^{k}n$$ which reaches \(1\) after \(\log_{3/4}(n^{-1})\) iterations, that is \(\mathcal{O}(\log n)\).
So, we expect the collatz funktion to decrease very rapidly, which is a heuristic justification of the conjecture.
# The 0 to 1 ratio #
To prove the CC, one has to show that there are no infinite trajectories and that no trajectory passes into a non-trivial cycle.
Definition. Consider the function $f$ for some integer $n \in \mathbb{N}$ and some bit $b \in \{0,1\}$ $$f(b,n) \stackrel{\mathrm{def}}{=} \left( \frac{5b+1}{2} \right)n + b$$ then the function $F: \{0,1\}^* \times \mathbb{N} \rightarrow \mathbb{Q}$ is defined as $$F(\mathsf{V},n) = F((b_0,...,b_{m-1}),n) \stackrel{\mathrm{def}}{=} f(b_{m-1},f(b_{m-2},...,f(b_1,f(b_0,n))...)$$ $\blacktriangleleft$ |
The function $f$ behaves like the collatz function, whereof the bit $b$ decides if case 1 or case 2 is executed. Note that $F$ will not be an integer for all input vectors. To be a valid "collatz vector" the distribution of the $1$s and $0$s in the vectors must follow some characteristics. At least of a $1$ there must follow a $0$, which is a called the $10$-rule.
From a given collatz trajectory (i.e., the integers $C^k(n)$) one could build the corresponding parity vectory by simply reducing each $C^k(n)$ modulo $2$.
Definition. If $\mathsf{V}$ is a binary vector $(b_0,...,b_{m-1})$ of length $m$, then we denote as $N_{\mathsf{V},1}$ the number of $1$s in $\mathsf{V}$, i.e, the Hamming-weight of $\mathsf{V}$. And as $N_{\mathsf{V},0}$ the number $0$s to be found in $\mathsf{V}$. $\blacktriangleleft$ |
Andrei [2] proved that for all integer that are no counterexample to the CC it holds:
Theorem [Andrei et al.] Let $n$ be an integer from the Collatz tree and let $\mathcal{P}(n)$ the corresponding parity vector. Then the two integers $N_{\mathcal{P}(n),0}$ and $N_{\mathcal{P}(n),1}$ satisfy the inequality \begin{align*} \frac{N_{\mathcal{P}(n),1}}{N_{\mathcal{P}(n),0}} < \frac{\log 2}{\log 3} \end{align*} |
What i want to show next, is that this ratio also holds for the $1$s and $0$s in the non-trivial cycle. And then this ratio is used to show that there are only very few pairs of $N_{\mathsf{V}_0}$ and $N_{\mathsf{V}_1}$ that are possible.
The processing of several collatz steps, that can be captured by the function $F$, leads to an output value that depends entirely on the order and the ratio of the involved operations, i.e., the $0$ and $1$. In order to proceed, we construct an explicit formula for the output of the function $F$, when it is called with a binary vector $\mathsf{V}$ on an integer $n$.
Definition. Let $\mathsf{V} = (b_0,...,b_{m-1})$ be a binary vector and let $\mathrm{pos}_1(i)$ denote the position of the $i$-th $1$ in $\mathsf{V}$. The function $v_\mathsf{V}(i)$ is then defined as $$v_\mathsf{V}(i) \stackrel{\mathrm{def}}{=} |\{b_j \in \mathsf{V}; j < \mathrm{pos}_1(i)\;\mathsf{and}\; b_j = 0\}| $$ |
The function $v$ counts the number of $0$s in $\mathsf{V}$ up to the $i$-th $1$-bit, in particular $v_\mathsf{V}(i) \leq \mathsf{pos}_1(i)$.
Lemma [Böhm and Sontacchi 1978 - Modified]. Given an integer $n$ and a binary vector $\mathsf{V}=(b_0,...,b_{m-1})$ then the function $F(\mathsf{V},n)$ evalutes to $$\label{appl} F(\mathsf{V},n) = \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n + \frac{1}{2^{N_{\mathsf{V},0}}}\sum^{N_{\mathsf{V},1}-1}_{i=0}2^{v_\mathsf{V}(i+1)}3^{N_{\mathsf{V},1}-1-i} $$ |
The Lemma above is only modified in respect to the notation and the left side of the equation. Actually, Böhm and Sontacchi proved that an integer $n$ that is part of a non trivial cycle, must be of the form
$$(\text{Eq. 1}):\;\;\;n = \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n + \frac{1}{2^{N_{\mathsf{V},0}}}\sum^{N_{\mathsf{V},1}-1}_{i=0}2^{v_\mathsf{V}(i+1)}3^{N_{\mathsf{V},1}-1-i}$$
We simply, replaced $n$ with the $F$ function, which generates $n$ whenever the correct $\mathsf{V}$ vector is used.
Next, i show that from this it follows also the same ratio, as Andrei proved for an integer from the collatz tree.
Just take Eq. 1 and rearrange it: $$\left(2^{N_{\mathsf{V},0}}- 3^{N_{\mathsf{V},1}}\right)n = \sum^{N_{\mathsf{V},1}-1}_{i=0}2^{v_\mathsf{V}(i+1)}3^{N_{\mathsf{V},1}-1-i}$$ The right-hand-side is positiv, hence the left-hand-side has to be, so $$ 2^{N_{\mathsf{V},0}}- 3^{N_{\mathsf{V},1}} > 0$$ Taking the $\log_2$ $$N_{\mathsf{V},0}- \frac{\log 3}{\log 2}N_{\mathsf{V},1} > 0$$
which is $$ (*)\;\;\;\frac{\log 2}{\log 3} > \frac{N_{\mathsf{V},1}}{N_{\mathsf{V},0} } $$
Lemma. Given an integer $n \in \mathbb{N}$, $n > 1$, then the $m$-length binary vector that does not violate the $10$-rules and is of the form $(0^{D}|(10)^{N_{\mathsf{V},1}-1}|1)$ maximizes $F(\mathsf{V},n)$, with $N_{\mathsf{V},0}-N_{\mathsf{V},1} + 1 = D$. |
Before we prove this lemma, we comment on the notation of $(0^{D}|(10)^{N_{\mathsf{V},1}-1}|1)$. First of all, the notation leaves out the commata, and presents a binary string. However, there is no problem in converting the binary string into a vector. The symbol $"|"$ stands for the usual string concatenation. $0^m$ is the short-version to symbolise a string that consists of entirely $m$ zeros. And $(10)^m$ is the shortcut for the $m$ times repetition of the binary string $10$. In this case, we get vectors of the form $(0,0,...,0,1,0,1,0,1,0,...,1,0,1)$.
Proof. Let us first take a look at the $v$ function and how it behaves for such a vector.
If one calls the function $F$ with a vector $\mathsf{V}$ of the form $\mathsf{V}^* = (0^{D}|(10)^{N_{\mathsf{V},1}-1}|1)$, then the result can be written as $$F(\mathsf{V}^*,n) = \frac{3^{N_{\mathsf{V}^*,1}}}{2^{N_{\mathsf{V}^*,0}}}n + \frac{1}{2^{N_{\mathsf{V}^*,0}}}\sum^{N_{\mathsf{V}^*,1}-1}_{i=0}2^{v_\mathsf{V}(i+1)}3^{N_{\mathsf{V}^*,1}-1-i} $$ The $v$-function for the increasing input values for the vector $\mathsf{V}^*$ is equal to
$$ v_{\mathsf{V}^*}(i+1) = D+i $$
We now show, that $F(\mathsf{V},n) < F(\mathsf{V}^*,n)$ for $\mathsf{V}$ being an arbitrary valid permutation of $\mathsf{V}^*$ that is not the identity (so $\mathsf{V}^* \neq \mathsf{V}$). The term $\frac{3^{N_{\mathsf{V}^*,1}}}{2^{N_{\mathsf{V}^*,0}}}n$ does not change, since only contain the total sums, which do not change when for a permutation. The only terms that do concern the distribution of the $0$ and $1$ in the vector are those that are connected to the $v$-function. To maximize these terms, we show that $D$ zeros must be at the beginning. Since all other values of $0$ and $1$ must occur alternating in order not to invalidate the $10$-law. But this is easy to show, because if you move one $0$ from the beginning to somewhere behind the $j > 1$ and before the $j+1$-th $1$. Then all terms $$2^{v_\mathsf{V}(i+1)},\text{for}\;\;i \leq 1$$ decrease, whereof all $$2^{v_\mathsf{V}(i+1)},\text{for}\;\;i > j$$ stay the same, since the number of preceeding $0$ does not change. Hence you only can decrease the total value when moving $0$ from the left to the right.
Q.e.d.
Next we apply this maximizing vector to a circle, and investigate what could happen, in particular, we prove the following Theorem.
Theorem. Given the parity vector $\mathsf{V}$ of an non-trivial cycle from the point of view of the smallest integer $n_c$ in that cycle. Then $N_{\mathsf{V},0}$ and $N_{\mathsf{V},1}$ satisfy the inequality $$\frac{\log 2}{\log 3}\left(1-\frac{1}{N_{\mathsf{V},0}}\right) < \frac{N_{\mathsf{V},1}}{N_{\mathsf{V},0}} < \frac{\log 2}{\log 3}$$ |
Proof. Suppose the trajectory of an integer $n$ passes into a $m$-length cycle after $k$ steps. Then within the $m$ integers that build the cycle, there must be a smallest integer, say $n_{c}$. W.l.o.g. we can assume that the cycle starts with $n_{c}$ and define everthing before as introduction. The output of $F(\mathsf{V},n_c) = n_c$ can be written as \begin{align*} n_c = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + \frac{1}{2^{N_{\mathsf{V},0}}}\sum^{N_{\mathsf{V},1}-1}_{i=0}2^{D+i}3^{N_{\mathsf{V},1}-1-i} \end{align*} The length of the cycle does not play a role. The maximizing structure is reflected in the term $2^{D+i}$ rather than $2^{v_\mathsf{V}(i+1)}$.
\begin{align*} n_c = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\sum^{N_{\mathsf{V},1}-1}_{i=0}\frac{3^{N_{\mathsf{V},1}-1-i}}{2^{N_{\mathsf{V},0}-i}} = \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}-1}}{2^{N_{\mathsf{V},0}}}\sum^{N_{\mathsf{V},1}-1}_{i=0}\frac{3^{-i}}{2^{-i}}\\ = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}-1}}{2^{N_{\mathsf{V},0}}}\sum^{N_{\mathsf{V},1}-1}_{i=0}\frac{2^{i}}{3^{i}} = \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}-1}}{2^{N_{\mathsf{V},0}}} \left( \frac{1-(2/3)^{N_{\mathsf{V},1}}}{1-2/3} \right) \\ % = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^j\frac{3^{N_{\mathsf{V},1}-1}}{2^{N_{\mathsf{V},0}}} \left( 3-3(\frac{2}{3})^{N_{\mathsf{V},1}} \right) \\ = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}} - 2^j\frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}} \left(\frac{2}{3}\right)^{N_{\mathsf{V},1}} = \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}} - 2^j\frac{2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}\\ = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}}-2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}} \end{align*} The term $2^D$ symbolises the leading $D$ zeros. By the defintion of the Collatz function $2^D$ must be less than $n_c$, since otherwise one would have reached $1$ (and thus stopped), when making $D$ steps of division by $2$. This is equivalent to the known fact, that the shortest possible trajectory is made by the descent of perfect powers of two. \begin{align*} n_c = &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + 2^D\frac{3^{N_{\mathsf{V},1}}-2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}} \\ < &\; \frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c + n_c\frac{3^{N_{\mathsf{V},1}}-2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}} \\ = &\; \frac{2\cdot 3^{N_{\mathsf{V},1}}-2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c\\ = &\; 2\frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c - \frac{2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c \end{align*} Furthermore \begin{align*} n_c < &\; 2\frac{3^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c - \frac{2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c\\ = &\; \frac{2^{\log_2(3)\cdot N_{\mathsf{V},1}+1}}{2^{N_{\mathsf{V},0}}}n_c - \frac{2^{N_{\mathsf{V},1}}}{2^{N_{\mathsf{V},0}}}n_c\\ = &\; \frac{2^{\log_2(3)\cdot N_{\mathsf{V},1}+1} - 2^{N_{\mathsf{V},1} }}{2^{N_{\mathsf{V},0}}}n_c\\ = &\; \left(2^{\log_2(3)\cdot N_{\mathsf{V},1}+1-N_{\mathsf{V},0}} - 2^{N_{\mathsf{V},1}-N_{\mathsf{V},0}}\right)n_c \end{align*}
Clearly, the term $2^{\log_2(3)\cdot N_{\mathsf{V},1}+1-N_{\mathsf{V},0}} - 2^{N_{\mathsf{V},1}-N_{\mathsf{V},0}}$ is positive. Since the left exponent is always larger than the right. However, when is this term $<1$?
So when is $\log_2(3)\cdot N_{\mathsf{V},1}+1-N_{\mathsf{V},0} < 0$. We have
\begin{align*}
0 > &\log_2(3)\cdot N_{\mathsf{V},1}+1-N_{\mathsf{V},0} \\
N_{\mathsf{V},0} > &\log_2(3)\cdot N_{\mathsf{V},1}+1 \\
1 > &\log_2(3)\cdot\frac{N_{\mathsf{V},1}}{N_{\mathsf{V},0}}+\frac{1}{N_{\mathsf{V},0}} \\
\end{align*}
Since we know that $\frac{1}{N_{\mathsf{V},0}} \leq \frac{N_{\mathsf{V},1}}{N_{\mathsf{V},0}} < \frac{\log 2}{\log 3}$ let us assume that $\frac{N_{\mathsf{V},1}}{N_{\mathsf{V},0}} = \frac{\log 2}{\log 3} - \epsilon$ for some $\epsilon > 0$. Hence
\begin{align*}
0 > &\log_2(3)\cdot N_{\mathsf{V},1}+1-N_{\mathsf{V},0} \\
N_{\mathsf{V},0} > &\log_2(3)\cdot N_{\mathsf{V},1}+1 \\
1 > & 1-\log_2(3)\epsilon+\frac{1}{N_{\mathsf{V},0}} \\
\log_2(3)\epsilon > & \frac{1}{N_{\mathsf{V},0}} \\
\epsilon > & \frac{\log 2}{\log 3 N_{\mathsf{V},0}} \\
\end{align*}
Hence we finally get
\begin{align*}
\frac{\log 2}{\log 3}\left(1-\frac{1}{N_{\mathsf{V},0}}\right) < \frac{N_{\mathsf{V},1}}{N_{\mathsf{V},0}} < \frac{\log 2}{\log 3}\\
\end{align*}
Q.e.d.
So the corridor for this $0$ to $1$ ratio is very small, i.e., for an value $N_{\mathsf{V},0}$ there is only one or two fitting value for $N_{\mathsf{V},1}$.
(I did not carefully proofread all this yet, so if someone finds a mistake please give me a note.)
[1] Lagarias, J. C. The 3x+1 problem: An annotated bibliography II (2000-2009). http://arxiv.org/pdf/math/0608208v5.
[2] Stefan Andrei, Manfred Kudlek, R. S. N. Some results on the Collatz problem. Acta Informatica 37, 2 (2000), 145.
[3] C. Böhm and G. Sontacchi: On the Existence of Cycles of given Length in Integer Sequences like x_(n+1) = x_n/2 if x_n even, and x_(n+1) = 3x_n + 1 otherwise. Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali. Serie VIII 64 (1978), 260-264.
No comments:
Post a Comment